1. 研究目的与意义
数字图像处理技术的发展,拓宽了人类获取信息的视野范围,研究表明,人眼视觉特性决定了我们只能看到电磁波谱中的可见光部分,其余的红外波段等波谱信息对人眼来说都是不可见的。而数字图像处理技术可以利用红外、微波等波谱信息进行数字成像,从而将人眼视觉不可感知的信息转变为可视化的图形图像信息。数字图像处理技术现如今己经深入应用于人们生活的各个领域:经过数字技术加工处理的航空遥感和卫星遥感图像主要用于地形地质、矿藏探查,自然灾害预测预报等领域。而目前广泛应用于临床诊断和治疗的各种成像技术,如超声波诊断、CT、核磁共振等都用到图像处理技术。对产品及部件进行无损检测成为数字图像处理技术在工业生产方面的重要应用。指纹识别统在公共安全领域得到了广泛使用。
与文字信息不同,图像信息的数据量非常庞大,如果将原始图像直接存储和传输,将会给存储器的容量和通信线路的传输带宽带来巨大的压力,而一味地扩大存储器容量和通信线路带宽也是不现实的,必须采用有效的压缩手段将图像信号进行压缩,因此,图像压缩算法成为近年来一个非常热门的研究领域。
我国是一个水果和蔬菜生产大国,水果和蔬菜的总产量均居世界之首。但是我国水果和蔬菜出口总量却很低,在国际市场上缺泛竞争力。为了提高我国果蔬在国际市场上的竞争力,近些年来,我国的果蔬商品化处理发展比较迅速,特别是计算机视觉技术在果蔬识别分类和品质检测领域中应用越来越广泛。
2. 课题关键问题和重难点
见附件
3. 国内外研究现状(文献综述)
1.理论认识:
Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。解决这些压力常见的方案是信号压缩。但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist采样机制是冗余的或者说是非信息的。
于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist采样定理要求的速率采样信号,同时又可以完全恢复信号。与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。事实上,稀疏性在现代信号处理领域起着至关重要的作用。近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。
4. 研究方案
第一步:小波交换;
第二步:直方图均衡化;
第三步:归一化处理;
5. 工作计划
第一周:查找文献资料,了解什么是数学建模,什么是压缩感知技术,并了解MATLAB语言工具,以及程序设计流程;
第二周:课题中涉及的知识作深入了解,掌握MATLAB语言工具,以及程序设计流程;
第三周:制定研究计划,写开题报告;
以上是毕业论文开题报告,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。