基于生成式对抗网络的文档图像二值化方法研究开题报告

 2022-08-27 09:57:00

全文总字数:3100字

1. 研究目的与意义(文献综述)

文档图像二值化是文档自动识别与分析的关键预处理步骤,其性能优劣直接影响系统的后续操作(如文字提取和识别)的准确度。由于图像受墨迹浸润、页面污迹、背景纹理等退化因素影响,使得低质量文档图像的二值化仍是目前的研究重点和难点。当下用于文档图像二值化的方法也有很多,而相比传统方法来说,GAN是一个比较新的生成模型方法,利用GAN的优势来进行文档图像二值化是一个值得研究的方向。

GAN是一个新的生成模型方法,在2014年由Hinton的博士生lan Goodfellow提出,随后关于GAN的改进型在学术界研究的如火如荼,到目前为止仍有很大的发展空间。GAN启发自博弈论中的二人零和博弈(two-player game),在二人零和博弈中,两位博弈方的利益之和为零或一个常数,即一方有所得,另一方必有所失,GAN模型中的两位博弈方分别由生成式模型(generative model)和判别式模型(discriminative model)充当。生成模型G捕捉样本数据的分布,判别模型是一个二分类器,估计一个样本来自于训练数据(而非生成数据)的概率。G和D一般都是非线性映射函数,例如多层感知机、卷积神经网络等。GAN强大之处在于能自动学习原始真实样本集的数据分布,不管这个分布多么的复杂,只要训练的足够好就可以学出来。传统的机器学习方法,一般会先定义一个模型,再让数据去学习。比如知道原始数据属于高斯分布,但不知道高斯分布的参数,这时定义高斯分布,然后利用数据去学习高斯分布的参数,得到最终的模型。而GAN的生成模型最后可以通过噪声生成一个完整的真实数据。GAN一开始并不知道这个规律是什么样,也就是说GAN是通过一次次训练后学习到的真实样本集的数据分布。

自Goodfellow于2014 年提出GAN 以来,各种基于GAN 的衍生模型被提出,这些模型的创新点包括模型结构改进、理论扩展及应用等。比如, CGAN:CGAN首次提出为GAN增加限制条件,从而增加GAN的准确率;DCGAN:即将深度学习中的卷积神经网络应用到了对抗神经网络中,这个模型为工业界具体使用CNN的对抗生成网络提供了非常完善的解决方案,并且生成的图片效果质量精细,为之后GAN的后续再应用领域的发展奠定了很好的基础,等等。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究的基本内容与方案

本毕业设计研究的基本内容是:在基于生成式对抗网络的理论下,选用合适的生成式对抗网络模型框架构建自己比较熟悉的文档图像二值化的方法,配合实现基于生成式对抗网络的文档图像二值化。

本次毕业设计的具体目标是:利用基于生成式对抗网络的文档图像二值化方法实现对含有噪音的彩色图片进行处理,将需要处理的图像转换成预期标准的二值化图以便后续字符识别的目的。

本次毕业设计拟采用的技术方案及措施:

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 研究计划与安排

(1)2019/1/14—2019/1/22:查阅参考文献,明确选题;

(2)2019/1/23—2019/2/22:进一步阅读文献,完成开题报告;翻译英文资料(不少于5000汉字),并交予指导教师检查。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献(12篇以上)

[1] 王坤峰,苟超,段艳杰. 生成式对抗网络GAN的研究进展与展望.[J] 自动化学报,2017,43(3):321-331

[2] 熊炜, 徐晶晶. 基于支持向量机的低质量文档图像二值化. [J]计算机应用与软件,2018

[3] 林懿伦,戴星原,李力,王晓,王飞跃. 人工智能新前线:生成式对抗网络.[J] 自动化学报,2018,44(5):775-792

剩余内容已隐藏,您需要先支付 1元 才能查看该篇文章全部内容!立即支付

以上是毕业论文开题报告,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。