基于卷积神经网络的遥感图像中舰船检测与识别方法研究开题报告

 2022-08-29 10:48:55

全文总字数:7525字

1. 研究目的与意义(文献综述)

背景资料:

随着遥感信息科学的迅猛发展,遥感技术作为一门综合性的技术被广泛应用于军用、民用的各领域,在陆地资源调查、海洋勘探、军事侦察、打击分析和评估等方面发挥着重要的作用。而在遥感图像中,海洋占据绝大部分,所以对海上的舰船检测识别就显得尤为重要。而同时,随着科技的不断发展,遥感图像的分辨率也是逐渐的提高,所以在高分遥感图像中,对遥感图像中的舰船目标检测并识别出不同的种类受到人们越来越多的重视。比如在军事领域方面,舰载侦察机、无人侦察机等平台上通常会获取到大量的侦察遥感图像,从侦查影像里提取有用的各种敌方或者我方舰船信息,并形成有价值的图像情报,在军事作战分析领域发挥着重要的作用;民用方面,舰船的检测和识别可以对海上船的位置进行监控,方便海上搜救、走私船搜索以及海域监控等。因此,如何实现对遥感图像中的舰船信息进行检测和识别,进而对我们军事和民事方面都产生有效的作用,是当前的的重要问题。

对遥感图像的舰船进行检测和识别的主要问题在于,遥感图像是俯瞰图,而且有高复杂度的背景信息,并且遥感图像中的物体的比例、方向和密集度都有着很大的自由度,所以现在成熟并且高效的检测算法(比如faster R-CNN)应用在遥感图像上并不能发挥很好的作用。所以在检测阶段就需要找到一种方法可以高效地检测在复杂的遥感影像中的小的物体、任意方向的物体和密集的物体。比如在一个港口处,图像中包含的信息很多,可能有渔船、民用船、军用舰船等各种类别的舰船密集在一起,并且舰船停放的方向也都是任意的,这就需要能够将它们合理地用框标注区分开来。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 研究的基本内容与方案

基本内容与目标:

(1) (1)通过阅读相关文献,对象检测的概念和目前的各种对象检测方法和相应的优缺点。

(2) (2)利用已经提出的各种对象检测算法,理解其中的功能模块,测试对比选取合适的算法来分析调查结果。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 研究计划与安排

(1) 2019/1/22—2019/2/15:明确选题,查阅相关文献;

(2) 2019/2/16—2019/2/28:进一步阅读文献,外文翻译,分析和总结,撰写开题报告;

(3) 2019/2/28—2019/4/30:系统架构,系统设计与开发(或算法研究与设计)、系统测试、分析、比较与完善;

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

4. 参考文献(12篇以上)

[1] Girshick R , Donahue J , Darrell T , et al. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 38(1):142-158.

[2] Ross Girshick. Fast R-CNN [J]. International Conference on Computer Vision (ICCV) 2015:1440-1448.

[3] Shaoqing Ren, Kaiming He, Ross Girshick, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2015, 39(6):1137-1149.

剩余内容已隐藏,您需要先支付 1元 才能查看该篇文章全部内容!立即支付

以上是毕业论文开题报告,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。