1. 研究目的与意义
拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。
拉氏变换是一个线性变换,可将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。
拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。
2. 研究内容和预期目标
拉普拉斯变换的本质是将任何函数分解为无穷多复指数函数的级数形式 并且一般情况下复指数函数的频率是连续的。拉普拉斯变换的目的是计算,它只是一种计算工具。
1.介绍拉普拉斯变换的公式 2.研究拉普拉斯变换的物理学中的应用 3.总结拉普拉斯变换的意义 4.总结出自己对拉普拉斯变换的理解及优缺点的一点点看法。
3. 国内外研究现状
从正则系综配分函数切换到微正则系综态密度或者说谱密度的时候,所用的是拉普拉斯逆变换;反之是拉普拉斯变换。其中核的指数上的复数也很好理解,它经常出现于统计力学中的Lee-Yang理论(由李政道和杨振宁于1952年通过两篇论文建立):即复化之后的温度,化学势或者外磁场。他们通过这种复化的方法推导出出了在热力学极限下,系统发生一级或者连续相变的条件(原文是对于自旋系统的):就像复分析里的branch cut一样,Lee-Yang零点在复平面上聚集成一条线,只有取实数值的物理量在相变是跨过这条线,才会发生一级相变。这些零点解释了为什么一个明明是解析函数的配分函数在相变时却能导致发散的物理量,也给出了一个no-go theorem: 不取热力学极限就不会发生相变;至今这套理论还是研究传统非拓扑相变的利器。有人会说复的物理学量只是数学技巧罢了,但近来有实验表明我们是能观测到Lee-Yang零点的, 跑偏一点,这套理论还衍生出Lee-Yang edge,即高于相变温度时,上述的Lee-Yang零点汇聚线终止于两个临界点,而用于描述该临界点附近复物理量的理论是一个central charge为-22/5的2维共形场论,叫非幺正minimal model.
因此拉普拉斯变换在研究3维纯量子引力(不含费米物质)特别是黑洞熵以及黑洞Hawking-Page相变的时候,经常出现在半经典近似中,因为如果假设AdS/CFT成立,复化的热力学量既属于2维渐进边界上的引力边界条件,也是边界2维共形场论的参数。可以参照下列Witten和尹希的文章(Maloney-Witten里(5.7)式附近把拉普拉斯逆变换写成拉普拉斯变换了)。
PS: Lee-Yang的原文里只考虑了复化的外磁场和化学势,叫做field-driven transiTIon;复温度是1965年Michael E. Fisher引入的,叫temperature-driven transiTIon,是一个nontrivial的推广,注意不要和有限温度场论中的虚时间混淆。
4. 计划与进度安排
在学习拉普拉斯变换之后,通过举例论证法来更好地理解应用拉普拉斯变换或是通过比较分析法和傅里叶变换作比较来更好地学习总结拉普拉斯变换。
5. 参考文献
《数学物理方法》——柯导明
以上是毕业论文开题报告,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。