1. 研究目的与意义
在描述生物竞争的Lotka-volterra模型以及与多组分Bose-Einstein 凝聚态相关的Gross-Pitaevskii方程组中,都涉及到一类奇异扰动非线性偏微分方程组. 在竞争参数趋于正无穷的奇异极限问题中, 解的支集相互分离, 这样就产生了一个自由边界问题. 许多数学工作者, 例如Caffarelli, 林芳华, Dancer, 和S. Terracini 等对此类问题作了大量的研究, 对它们的研究涉及偏微分方程、几何测度论、泛函分析等多个数学分支.本文拟研究一类强耦合椭圆系统解的渐近行为,拟将经典扩散问题的部分结果推广到交错扩散模型。
2. 研究内容和预期目标
课题拟研究一类具强竞争作用的强耦合椭圆方程组解的空间结构。竞争参数有限时系统解会有一定程度的混合,当竞争参数趋于无穷时,系统解的支集相互分离,产生一个自由边界问题。课题拟在这一结果的基础上继续研究自由边界的性质。拟解决如下问题:
1.自由边界的维数估计;
2.自由边界点的分类,奇异部分的部分正则性。
3. 国内外研究现状
在描述生物竞争的Lotka-volterra模型以及与多组分Bose-Einstein 凝聚态相关的Gross-Pitaevskii方程组中,都涉及到一类奇异扰动非线性偏微分方程组. 这类方程组其解的空间结构——包括共存或消亡,一直都是微分方程界研究的热点问题。特别是最近几年,人们对强相互作用导致的解的相分离现象表现出极大的兴趣,这是由于它们都涉及到一类奇异扰动的椭圆型或者抛物型方程组。在参数有限时方程组的解有一定程度的混合,但在参数趋于正无穷的奇异极限问题中,解的支集相互分离,从而产生一个自由边界问题。这引起了偏微分方程领域国内外学者极大的关注,美国德克萨斯大学的L.A.Caffarelli,Courrant数学所的林芳华,澳大利亚悉尼大学的E.N.Dancer,意大利米兰可比卡大学的S.Terracini,中国科学院的张志涛,扬州大学的刘祖汉等在相关方面取得了重要结果([11-23])。
Caffarelli, Karakhanyan和Lin [11,12],Conti,Terracini 和 Verzini [13,14],Dancer, Wang和Zhang[16]等证明了第一类情形下(Lotka-Voltera型生物竞争模型)系统解关于参数的一致Holder界估计,以及趋向正无穷时的极限方程解的正则性和自由边界的正则性;Dancer,Wang和Zhang [16] 证明了第二类情形下(描述Bose-Einstein凝聚态的Gross-Pitaevskii方程组)系统解的一致Holder界估计;Caffarelli和Lin [12], Tavares和Terracini [23] 证明了自由边界的正则性;Dancer, Wang和Zhang[18]证明了两类模型的极限方程有着相同的结构(这是Terracini等的一个猜想); Liu[19-21] 研究了第二类情形下系统复值解的空间分离行为,并证明了在某种特殊情形下,系统解将会发生熄灭(extinction)现象。
4. 计划与进度安排
2022年11月20日至30日 完成毕业论文文献搜索以及开题报告.
2022年02月26日至2022年03月019日 进入实习单位实习并系统学习泛函分析、偏微分方程基础课程,掌握基础知识及相关理念。
2022年03月19日至25日 系统阅读一些相关文献,了解国内外的研究现状.开始撰写论文初稿,并同时撰写指导周记以及完成中期检查表的书写.
5. 参考文献
【 [1]H. Amann, Dynamic theory of quasilinear parabolic system, III. Global existence,Math. Z.,202(1989) 219-250.[2] E. C. M. Crooks, E. N. Dancer, D. Hilhorst, M. Mimura and H. Ninomiya, Spatial segregation limit of a competition diffusion system with Dirichlet boundary conditions,Nonlinear Anal. Real World Appl.,5 (2004) 645-665.[3]S. M. Chang, C. S. Lin, T. C. Lin, and W. W. Lin, Segregated nodal domains of two-dimensionalmultispecies Bose-Einstein condensates,Phys. D, 196(3-4) (2004) 341-361.[4] L. Chen and A. J\'{u}ngel. Analysis of a multi-dimensional parabolic population model with strongcross-diffusion, SIAM J. Math. Anal., 36(2004) 301-322.[5] L. A. Caffarelli, A. L. Karakhanyan, F. Lin, The geometry of solutions to a segregation problem for non-divergence systems, J. Fixed PointTheory Appl.,5 (2)(2009) 319-351.[6] L. A. Caffarelli, F. Lin, An optimal partition problem for eigenvalues, J. Sci. Comput.,31 (1) (2007) 5-18.[7] M. Conti, S. Terracini, G. Verzini, A variational problem for the spatial segregation of reaction diffusion systems, Indiana Univ. Math. J.,54 (3)(2005) 779-815.[8] M. Conti, S. Terracini, G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2)(2005) 524-560.[9] M. Conti, S. Terracini, G. Verzini, Uniqueness and least energy property for strongly competing systems, Interfaces Free Bound., 8(2006)437-446.[10] E. N. Dancer, Y. H. Du, Competing species equations with diffusion, large interactions, and jumpingnonlinearities, J. Differential Equations,114(1994) 434-475.[11] E. N. Dancer, D. Hilhorst, M. Mimura, L. A. Peletier, Spatial segregation limit of a competition-diffusionsystem, European J. Appl. Math.,10(1999) 97-115.[12] E. N. Dancer, K. Wang, Z. Zhang, Uniform H\'{o}lder estimate for singulary perturbed parabolic systems of Bose-Einstein
condensates and competing species,J. Differential Equations, 251(2011) 2737-2769.[13] E. N. Dancer, Kelei Wang, Zhitao Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math.Soc., 364 (2) (2012) 961-1005.[14] E. N. Dancer, Kelei Wang, Zhitao Zhang, The limit equation for the Gross-Pitaevskii equations and S. Terracini's conjecture, Journal of Functional Analysis}, 262 (2012) 1087-1131.[15]E. N. Dancer and Z. Zhang, Dynamics of Lotka-Volterra competition systems with large interactions,J. Differential Equations,182 (2002) 470-489.[16] Qing Han, F. Lin, Nodal Sets of Solutions of Elliptic Differential Equations, books available on Han’s homepage.[17] Z. Liu, Phase separation of two component Bose-Einstein condensates, J. Math. Phys.,50 (2009) 102104.[18] Z. Liu, The spatial behavior of rotating two-component Bose-Einstein condensates,J. Funct. Anal., 261, (2011) 1711-1751.[19]Y. Lou, W. M. Ni, Diffusion, self-diffusion, and cross-diffusion, J. Differential Equations, 131(1996) 79-131.[20] Y. Lou, W. M. Ni, Y. Wu, On the global existence of a cross-diffusion system,Discrete Contin.Dynam. Syst., 4(1998) 193-203.[21] M. Mimura, Stationary pattern of some density-dependent diffusion system with competitivedynamics,Hiroshima Math. J., 11 (1981) 621-635.[22] M. Mimura, K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,J. Math. Biol., 9(1980) 46-64.[23] B. Noris, H. Tavares, S. Terracini, G. Verzini, Uniform H\'{o}lder bounds for nonlinear Schr\'{o}dinger systems with strong competition,Comm. Pure Appl. Math.,63 (3) (2010) 267-302.[24] C. V. Pao, Strongly coupled elliptic systems and applications to Lotka-Volterra models withcross-diffusion, Nonlinear Anal., 60(2005) 1197-1217.[25] W.H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with largecross-diffusion coefficients, J. Math. Anal. Appl., 197 (1996) 558-578.
\b[26] W. H. Ruan, A competing reaction-diffusion system with small cross-diffusions,Can. Appl.Math. Quart., 7(1999) 69-91.[27] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol.,79(1979) 83-99.[28] N. Soave, Uniform bounds for strongly competing systems: the optimal Lipschitz case, arxiv:1407.6674v2.[29] Hugo Tavares, Susanna Terracini, Regularity of the nodal set of the segregated critical configuration under a weakreflection law, preprint 2010,Calc. Var. Partial Differential Equations, doi:10.1007/s00526-011-0458-z, in press.[30] S. Terracini, G. Verzini, and A. Zilio, Uniform H\'{o}lder bounds for strongly competing systemsinvolving the square root of the laplacian, Preprint arXiv:1211.6087v1.[31] S. Terracini, G. Verzini, and A. Zilio, Uniform H\'{o}lder regularity with small exponent in competing fractional diffusion systems, Preprint arXiv:1303.6079v1.[32]G. Verzini, A. Zilio, Strong competition versus fractional diffusion: the case of Lotka-Volterra interaction, arxiv:1310.7355v1.[33] J. Wei, T. Weth, Asymptotic behaviour of solutions of planar elliptic systems withstrong competition, Nonlinearity,21 (2)(2008) 305-317.[34] K. Wang, Z. Zhang, Some new results in competing systems with many species, Ann. Inst. H. Poincare Anal. Nonlinear Analysis,27 (2) (2010) 739-761.[35] S. Zhang, Z. Liu, Singularities of the nodal set of segregated configurations, Calc. Var. Partial Differential Equations,54(2015) 2017-2037.[36] S. Zhang, Z. Liu, Nodal set of strongly competition systems with fractional Laplacian, Nonlinear Differ. Equ. Appl.,22 (2015) 1483-1513.[37] S. Zhang, Z. Liu, Z. Lin, Global minimizers of coexistence for rotating N-component Bose-Einstein condensates, Nonlinear Anal. RWA., 12 (2011) 2567-2578.[38] L. Zhou, S. Zhang, Z. Liu, Uniform H\'{o}lder bounds for a strongly coupled elliptic system with strong competition,Nonlinear Anal., 75 (2012) 6210-6219.[38] L. Zhou, S. Zhang, Z. Liu, L. Lin, The spatial behavior of a strongly coupled non-autonomous elliptic system.Nonlinear Anal., 75(2012) 3099-3106.
以上是毕业论文开题报告,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。